

LA-UR-21-30551

Approved for public release; distribution is unlimited.

Title: NHMFL Pulsed Field Facility Capabilites Overview

Author(s): Wampler, James Paris

Zapf, Vivien

Intended for: For use it conversations with other scientists

Issued: 2021-10-22

NHMFL Pulsed Field Facility Capabilites Overview

James Wampler, Vivien Zapf
Los Alamos National Laboratory (LANL)

Outline:

- 1. Magnets
- 2. Probes
- 3. Process

3N070A

- 1. Four (4) 65 T Magnets
- 2. 75 T Magnet
- 3. Mid Pulse magnet
- 4. 100 T Magnet in... soon?

@Los Alamos National Lab

A User Facility: Magnetization Resistivity **Electric polarization/dielectric** Magnetostriction Magnetocaloric dHv α , sdH: fermi surface Tunnel-diode oscillators: rf penetration depth **Optical absorption**

- Include 73 T and mid pulse
- include pic of generator in the warehouse

Four (4) 65 T Magnets

@Los Alamos National Lab

A User Facility:

Magnetization

Resistivity

Electric polarization/dielectric

Magnetostriction

Magnetocaloric

 $dHv\alpha$, sdH

Tunnel-diode oscillators

Optical absorption

Capacitor bank ~ 4 MJ

73 T Magnet

@Los Alamos National Lab

A User Facility:

Magnetization

Resistivity

Electric polarization/dielectric

Magnetostriction

Magnetocaloric

 $dHv\alpha$, sdH

Tunnel-diode oscillators

Optical absorption

@Los Alamos National Lab

101 Tesla multishot (world record)

60 Tesla long pulse (world record)

A User Facility:

Magnetization

Resistivity

Electric polarization/dielectric

Magnetostriction

Magnetocaloric

 $dHv\alpha$, sdH

Tunnel-diode oscillators

Optical absorption

High Field Magnetization

Black line: Magnet

- Measurement : voltage across the pickup coil $\propto \frac{dM}{dH}$.
- Integrate $\frac{dM}{dH}$ with field to obtain the magnetization.

Minimum temperature: ~0.6 K

Black: Sample Cylinder – 1 mm inner diameter, 5 mm length.

 Sample must be held still through N Grease or similar

Red: Pickup coil – Cu - 1000 turns (CCW) + 500 (CW) + one turn of compensation coil

High Field Magnetization

Raw data

Integrated magnetization data

High field Polarization

Samples must be insulating

We measure I_{me} and integrate with time to obtain the change of polarization

$$Q = \int I_{me} dt$$

$$\frac{dQ}{dt} = \frac{dQ}{dB} \frac{dB}{dt} = I_{me}$$

Current is proportional to dB/dt -> faster field sweep rate increases the signal size!

High field Polarization

Raw data

Integrated delta P data

Polarization Sample Prep

- Sample must be insulating (> TOhm)
- ~1 pA minimum signal
 - Current depends on size of surface, so big pads is good.
- Flat bulk or thin film two well defined surfaces
 - Multilayer for bottom lead or some other way of accomplishing that
 - Electrodes on both sides
- Au or Pt wires
- Can measure 2 samples simultaneously; 1 in plane, 1 out of plane
- 5 mm² max
- <2 mm

Magnetocaloric effect

• Measuring temperature change of sample as a function of field in the adiabatic condition.

AuGe: Semiconductor – Thermometer.

Au: Electrical Contact

Picture of α -RuCl₃

Measure resistance of AuGe - > Convert it to temperature. (Can also measure resistance and not convert to temperature!)

- Can sputter on the contacts at LANL or at UCSD
- Same technique used to measure AC resistivity
 - AuGe not necessary
- 1 M Ω practical limitation

Magnetocaloric effect – example data

High Field Magnetostriction

Limitation: Mostly only useful for bulk samples!

Credit: fbgs.com

High Field Magnetostriction – example data

PHYSICAL REVIEW B 102, 214432 (2020)

Applying for magnet time

- The Pulsed Field Facility (part of the NHMFL) is a user lab
- 3 page long proposal covering the proposed science and impact
- 1 page long experimental proposal covering the experiment and prior work
- Deadlines are rolling announced as we approach
 - Submit any time
 - Next deadline Nov 12, 2021
- I am happy to support your magnet times

https://nationalmaglab.org/user-resources/request-magnet-time

Maglab in the time of Covid

- Only vaccinated individuals may visit the lab
 - Non-US residents require additional testing upon arrival
- NM very safe. Los Alamos is particularly safe.
 - LANL has a vaccine mandate effective Oct 15
- Flying still risky. 14 hour drive still lengthy.
- Since you are applying for time well in advance, there's always unknowns.